HERITAGE THERMAL SERVICES 1250 St. George Street East Liverpool, Ohio 43920-3400 Phone: 330-385-7337 Fax: 330-385-7813 www.heritage-thermal.com > July 31, 2013 VIA UPS and OEPA AIR SERVICES Mr. George Czemiak, Chief (UPS) U.S. EPA Region V Air Enforcement and Compliance Assurance Branch Mail Code AE-17J 77 West Jackson Chicago, IL 60604 Mr. Eric Bewley (Air Services) OEPA-DAPC-NEDO 2110 E. Aurora Road Twinsburg, OH 44087 OHSAS 18001: 2007 ISO 14001: 2004 ISO 9001: 2008 RE: HERITAGE THERMAL SERVICES SEMI-ANNUAL STARTUP, SHUTDOWN, AND MALFUNCTION REPORT & SEMI-ANNUAL EXCESS EMISSIONS AND CMS REPORT #### Greetings: Please find enclosed a written report entitled Semi-Annual Startup, Shutdown, and Malfunction Report and Semi-Annual Excess Emission and CMS Report for Heritage Thermal Services. These reports are required by 40 CFR 63.10 and cover the time period of January 1, 2013 through June 30, 2013. I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are certain penalties for submitting false information including the possibility of fine and imprisonment for knowing violations. Thank you and if you have any questions or comments, please call me at the above number. Sincerely, Stewart Fletcher General Manager Set He Heritage Thermal Services # SEMI-ANNUAL STARTUP, SHUTDOWN, AND MALFUNCTION REPORT & SEMI-ANNUAL EXCESS EMISSION AND CMS REPORT For **Heritage Thermal Services** July 31, 2013 #### Section I - General Information A. Facility Information | Facility ID: | 02-15-02-0233 | | |------------------------|---------------------------|---| | Responsible Official's | Stewart Fletcher | · | | Name / Title: | General Manager | | | Street Address: | 1250 Saint George Street | | | City: | East Liverpool | | | State: | Ohio | | | Zip Code: | 43920 | | | Facility Name: | Heritage Thermal Services | | | Facility Local Contact | Vincent Waggle | | | Name: | Environmental Engineer | | | B. Relevant standard(s) or or | ther requirement(s) that is | s/are the basis for this repo | rt: | |---|-----------------------------|-------------------------------|-----| |---|-----------------------------|-------------------------------|-----| 63.10(d)(5)(i) - Periodic Startup, Shutdown, and Malfunction Reports **▼** No | C. Are you requesting a waiver of recordkeeping and/or reporting requirements under the | |---| | applicable relevant standard(s) in conjunction with this report? | | | If you answered yes, you must submit the application for a waiver of recordkeeping and/or reporting requirements together with this report. The application for waiver should include whatever information you consider useful to convince the Administrator that a waiver of recordkeeping or recording is warranted. (63.10(f)(3) #### Section II - Certification ☐ Yes Based upon information and belief formed after a reasonable inquiry, I as a responsible official of the above-mentioned facility, certify the information contained in this report is accurate and true to the best of my knowledge. | Stewart Fletcher, General Manager | | |-----------------------------------|---------------| | Signature: Stat Ht | Date: 7-29-13 | HERITAGE THERMAL SERVICES SEMI-ANNUAL SSMP, EE, & CMS REPORT July 31, 2013 #### Section III - Startup, Shutdown, and Malfunction Reports A. Startup, Shutdown, or Malfunction Actions All actions taken by Heritage Thermal Services during startup, shutdown, or malfunction events during the reporting period of **January 1**, **2013 through June 30**, **2013** were consistent with the procedures specified in the facility's Startup, Shutdown, and Malfunction Plan. #### B. Malfunctions Please find in the table below a list of each malfunction, the durations, and a brief description of the type of malfunction that occurred during the reporting period of January I, 2013 through June 30, 2013. See next page for completed table | | | | | The second secon | | | |--------------------------------|---------------|---------------|----------|--|--|---| | Name | Start Time | End Time | Duration | Cause (report) | Cause Description | Corrective
Actions | | RJ DP | 1/1/13 14:33 | 1/1/13 15:03 | 29.59 | Malfunction
Scrubber Pump | Quench pump
malfunction
caused unit
shutdown. | Restarted pump.
Restarted unit.
WO#130023 | | SCC
Temperature | 1/1/13 14:54 | 1/1/13 15:03 | 8.43 | Malfunction
Prior AWFCO | Quench pump
malfunction
caused unit
shutdown. | Restarted pump.
Restarted unit.
WO#130023 | | Total PB
Flow | 1/6/13 20:07 | 1/6/13 20:28 | 21.12 | Malfunction
Scrubber Leak | Leak in scrubber housing caused low PB flow. | Repaired leak.
Restarted unit. | | SCC
Pressure
Using Seals | 1/20/13 13:47 | 1/20/13 13:48 | 0,35 | Malfunction
Clinker Fell | Ash fall from
SCC into quench
caused pressure
spike. | Maintained draft using ID fan damper. | | SCC
Temperature | 1/30/13 1:51 | 1/30/13 4:39 | 167.54 | Malfunction
Emergency
Response | Manual WFCO initated and temperature reduced to prevent oil fire. | Situation
corrected. Unit
Restarted. | | Kiln
Temperature | 1/30/13 2:03 | 1/30/13 4:17 | 134.20 | Malfunction
Emergency
Response | Manual WFCO initiated and temperature reduced to prevent oil fire. | Situation
corrected. Unit
Restarted. | | THC | 2/14/13 10:22 | 2/14/13 11:20 | 57.55 | Malfunction Lance Plugging | Feed lance
plugged and
purged causing
poor combustion
and THC. | Cleared line.
Restarted unit. | | тнс | 2/16/13 11:02 | 2/16/13 11:49 | 46.59 | Malfunction
Combustion
Anomaly | Unexpected and unpreventable combustion upset led to THC event. | Reviewed waste feeds. Restarted unit. | | THC | 2/19/13 7:09 | 2/19/13 8:09 | 59.56 | Malfunction
Lance Slagging | Slag build-up on organic lance caused poor combustion. | Cleaned lance.
Restarted unit. | | SCC
Pressure
Using Seals | 3/3/13 5:44 | 3/3/13 5:45 | 0.36 | Malfunction
Clinker Fell | Large ash fall caused pressure and AWFCO. | Restarted unit. | | | | | | | | Corrective | |--------------------------------|---------------|---------------|----------|--------------------------------------|--|---| | Name | Start Time | End Time | Duration | Cause (report) | Cause Description | Actions | | SCC
Temperature | 3/3/13 5:52 | 3/3/13 6:47 | 54.43 | Malfunction
Prior AWFCO | Prior AWFCO caused loss of temperature OPL. | Regained
temperature.
Restarted unit. | | Scrubber
ECIS Flow | 3/7/13 13:53 | 3/7/13 13:55 | 1.57 | Malfunction
ECIS Blower
Motor | Broken belt on
blower motor
caused flow loss. | Replaced belt.
Restarted unit. | | SCC
Temperature | 3/21/13 8:23 | 3/21/13 10:19 | 116.58 | Malfunction
Boiler
Malfunction | Broken feed water
line caused
immediate
shutdown to
repair. | WFCO initiated.
Repairs
completed. | | Kiln
Temperature | 3/21/13 8:25 | 3/21/13 10:16 | 111.15 | Malfunction
Boiler
Malfunction | Broken feed water
line caused
immediate
shutdown to
repair. | WFCO initiated.
Repairs
completed. | | RJ DP | 3/21/13 8:43 |
3/21/13 10:15 | 92.44 | Malfunction
Boiler
Malfunction | Broken feed water
line caused
immediate
shutdown to
repair. | WFCO initiated.
Repairs
completed. | | SCC
Pressure
Using Seals | 4/9/13 3:14 | 4/9/13 3:15 | 0.30 | Malfunction
Clinker Fell | Ash fall from
SCC caused
pressure spike. | Maintained draft using ID Fan damper. | | THC | 4/11/13 0:36 | 4/11/13 1:36 | 59.53 | Malfunction
Combustion
Anomaly | Unexpected and
unpreventable
combustion upset
led to THC event. | Reviewed waste feeds. Restarted unit. | | ТНС | 4/12/13 19:30 | 4/12/13 20:29 | 58.49 | Malfunction
Combustion
Anomaly | Unexpected and unpreventable combustion upset led to THC event. | Reviewed waste feeds. Restarted unit. | | SDA ECIS
Flow | 4/13/13 9:10 | 4/13/13 10:01 | 51.13 | Malfunction
Carbon screw | Foreign object caught in screw feeder. | WO#131572.
Cleared screw.
Restarted unit. | | SCC
Pressure
Using Seals | 4/23/13 19:17 | 4/23/13 19:18 | 0.29 | Malfunction
Lance Purge | Tank farm
shutdown caused
lance purge and
pressure. | Maintained draft
using 1D fan
damper. | | THC | 4/26/13 21:27 | 4/26/13 21:36 | 9.15 | Malfunction
Lance Slagging | Slag build-up on
the high BTU
lance caused poor
combustion. | Cleaned lance.
Restarted unit. | | | | | | - | | | |--------------------------------|---------------|---------------|----------|--------------------------------------|--|---| | Name | Start Time | End Time | Duration | Cause (report) | Cause Description | Corrective
Actions | | SCC
Pressure
Using Seals | 4/28/13 9:17 | 4/28/13 9:18 | 0.30 | Malfunction
Clinker Fell | Ash fall from
SCC caused
pressure spike. | Maintained draft
using 1D Fan
damper. | | THC | 4/30/13 0:13 | 4/30/13 0:48 | 35.05 | Malfunction Lance Plugging | Solid build-up in
the Sludge 2 lance
caused poor
combustion. | Cleared lance.
Restarted unit. | | SCC
Pressure
Using Seals | 4/30/13 16:49 | 4/30/13 16:50 | 0.17 | Malfunction
Clinker Fell | Ash fall from
SCC caused
pressure spike. | Maintained draft
using ID Fan
damper. | | SCC
Pressure
Using Seals | 5/10/13 20:25 | 5/10/13 20:25 | 0.29 | Malfunction
Boiler Plugging | Ash build-up in boiler caused draft loss. | Adjusted damper.
Rodded boiler
tubes. | | SCC
Pressure
Using Seals | 5/10/13 23:52 | 5/10/13 23:52 | 0.29 | Malfunction
Boiler Plugging | Ash build-up in boiler caused draft loss. | Adjusted damper,
Rodded boiler
tubes. | | SCC
Pressure
Using Seals | 5/12/13 18:46 | 5/12/13 18:46 | 0.13 | Malfunction
Boiler Plugging | Ash build-up in boiler caused draft loss. | Adjusted damper.
Rodded boiler
tubes. | | ТНС | 5/12/13 22:39 | 5/12/13 23:12 | 33.04 | Malfunction
Combustion
Anomaly | Unexpected and
unpreventable
combustion upset
led to THC event. | Reviewed waste feeds. Restarted unit. | | Kiln
Temperature | 5/13/13 6:49 | | 17.01 | Malfunction | Plugging in oil lance cause temperature loss. | Cleared lance.
Restarted unit. | | SCC
Temperature | 5/22/13 17:26 | 5/22/13 17:29 | 2.35 | Malfunction
Lance Plugging | During WFCO,
operator could not
gain flow due to
plugging in lance. | Cleared lance.
Restarted unit. | | THC | 5/22/13 21:49 | 5/22/13 22:48 | 59.22 | Malfunction
Lance Plugging | Plugging then
purging of direct
lance cause poor
combustion. | Cleared lance.
Restarted unit. | | SDA ECIS
Flow | 5/24/13 8:54 | 5/24/13 10:51 | 117.19 | Malfunction
ECIS Screw | Manual WFCO to
correct broken
carbon feed
screw. | Replaced screw.
Restarted unit. | | 78- | | | | | | | |--------------------------------|---------------|---------------|----------|--------------------------------------|--|---| | Name | Start Time | End Time | Duration | Cause (report) | Cause Description | Corrective
Actions | | SDA ECIS
Pressure | 5/24/13 9:17 | 5/24/13 10:51 | 94.06 | Malfunction
ECIS Screw | Manual WFCO to
correct broken
carbon feed
screw. | Replaced screw.
Restarted unit. | | THC | 5/27/13 12:20 | 5/27/13 13:19 | 58.54 | Malfunction
Lance Plugging | Plugging then
purging in the
high BTU lance
caused poor
combustion. | Cleared lance.
Restarted unit. | | тнс | 5/27/13 17:49 | 5/27/13 18:48 | 58.53 | Malfunction
Combustion
Anomaly | Unexpected and
unpreventable
combustion upset
led to THC event. | Reviewed waste feeds. Restarted unit. | | Kiln
Temperature | 5/27/13 18:43 | 5/27/13 19:29 | 46.02 | Malfunction Lance Plugging | Plugging then
purging in the
high BTU lance
caused poor
combustion. | Cleared lance.
Restarted unit. | | SCC
Temperature | 5/27/13 18:44 | 5/27/13 19:17 | 33.04 | Malfunction Lance Plugging | Plugging then purging in the high BTU lance caused poor combustion. | Cleared lance.
Restarted unit. | | THC | 6/2/13 0:27 | 6/3/13 12:43 | 736.03 | Malfunction
Lance Purge | Unexpected purge
of slurry lance
caused THC. | Cleared lance.
Restarted unit. | | THC | 6/2/13 0:44 | 6/2/13 1:45 | 60.28 | Malfunction
Lance Purge | Lance surged
during recovery
from prior event. | Stabilized flow.
Restarted unit. | | Scrubber pH | 6/3/13 10:18 | 6/3/13 10:19 | 0.36 | Malfunction Data Acquisition | Problem with data logger caused false OPL event. | Issue corrected. Restarted unit. | | SCC
Pressure
Using Seals | 6/4/13 10:43 | 6/4/13 10:44 | 1.00 | Malfunction FW
Punch | Drum punch
malfunction
caused pressure
trip. | Checked logic.
Restarted unit. | | Scrubber pH | 6/7/13 15:29 | 6/7/13 16:21 | 51.41 | Malfunction Caustic Pump | Seal failure on caustic pump caused inability to maintain pH. | WO#132396.
Repaired pump.
Restarted unit. | | SCC
Pressure
Using Seals | 6/14/13 7:02 | 6/14/13 7:02 | 0.35 | Mall'unction
Boiler Plugging | Ash build-up in
boiler reduced
operator's ability
to maintain seal
pressure. | Rodded boiler.
Increased draft. | | | | | | T | | | |--------------------------------|---------------|---------------|----------|--------------------------------------|--|---------------------------------------| | Name | Start Time | End Time | Duration | Cause (report) | Cause Description | Corrective
Actions | | тнс | 6/16/13 15:41 | 6/16/13 16:33 | 52.15 | Malfunction
Combustion
Anomaly | Unexpected and
unpreventable
combustion upset
led to THC event. | Reviewed waste feeds. Restarted unit. | | THC | 6/24/13 19:52 | 6/24/13 20:22 | 29.57 | Malfunction
Combustion
Anomaly | Unexpected and unpreventable combustion upset led to THC event. | Reviewed waste feeds. Restarted unit. | | SCC
Pressure
Using Seals | 6/25/13 23:25 | 6/25/13 23:27 | 2.03 | Malfunction
Power Failure | Brief facility
power interruption
cause unit
shutdown. | Power restored.
Unit restarted. | | SDA ECIS
Flow | 6/25/13 23:29 | 6/26/13 1:17 | 108.28 | Malfunction
Power Failure | Brief facility
power interruption
cause unit
shutdown. | Power restored.
Unit restarted. | | RJ DP | 6/25/13 23:30 | 6/26/13 1:59 | 149.20 | Malfunction
Power Failure | Brief facility
power interruption
cause unit
shutdown. | Power restored.
Unit restarted. | | SCC
Temperature | 6/25/13 23:32 | 6/26/13 1:53 | 140.30 | Malfunction
Power Failure | Brief facility
power interruption
cause unit
shutdown. | Power restored.
Unit restarted. | | Kiln
Temperature | 6/25/13 23:34 | 6/26/13 1:57 | 142.35 | Malfunction
Power Failure | Brief facility
power interruption
cause unit
shutdown. | Power restored.
Unit restarted. | | Scrubber
ECIS Flow | 6/25/13 23:39 | 6/26/13 1:15 | 96.05 | Malfunction
Power Failure | Brief facility
power interruption
cause unit
shutdown. | Power restored.
Unit restarted. | | RJ Flow | 6/25/13 23:48 | 6/26/13 0:37 | 48.26 | Mallunction
Power Failure | Brief facility
power interruption
cause unit
shutdown. | Power restored.
Unit restarted. | | THC | 6/29/13 22:48 | 6/29/13 22:54 | 6.13 | Malfunction
Combustion
Anomaly | Unexpected and
unpreventable
combustion upset
led to THC event. | Reviewed waste feeds. Restarted unit. | ## C. Startup, Shutdown, or Malfunction Plan Revision History | DATE | Revision Number | Comment | |------------|-----------------|--| | 9/30/2003 | 0 | Initial Plan | | 2/27/2004 | 1 | ESP OPLs added. Malfunction list updated. | | 6/23/2005 | 2 | Revised section on operating modes. | | 10/27/2006 | 3 | RCRA Permit modifications. Malfunction list updated. | | 3/15/2007 | 4 | Malfunction list updated and comments added addressing instances beyond the operator's control. | | 6/6/2007 | 5 | Malfunction list updated and further comments added addressing instances beyond the operator's control. | | 10/16/2007 | 6 | Corrected minor deficiencies noted by OEPA. | | 9/1/2008 | 7 | Revised to reflect facility name change | | 6/12/2009 | 8 | This revision included, in Section 1.6.3.1, more detailed descriptions of the most common malfunction events that occur at the facility. It also included a description of data collection procedures during times when residence time expires while an exceedance event is taking place in Section 1.6.3. | | 12/9/2010 | 9 | Revision created
to reflect OPL changes resulting from the MACT CPT completed in 2010. Additionally, new malfunctions were added to Table 2-2. | | 5/1/2011 | 10 | Revision incorporated a discussion of the exceedance investigation process and procedures. Table 2-2 was also slightly revised to include addition malfunctions. | | 7/5/2012 | 11 | Revision 11 (7/5/2012) created to improve language surrounding the reporting and documentation during startup and shutdown events. | #### SEMI-ANNUAL EXCESS EMISSION AND CMS REPORT ## Section I - General Information #### A. Facility Information | Facility ID: | 02-15-0233 | |---|---| | Responsible Official's
Name / Title: | Stewart Fletcher / General Manager | | Street Address: | 1250 Saint George Street | | City: | East Liverpool | | State: | Ohio | | Zip Code: | 43920 | | Facility Name: | Heritage Thermal Services | | Facility Local Contact
Name: | Local contact is the same information as given above. | | Zip Code. | 43720 | |--|--| | Facility Name: | Heritage Thermal Services | | Facility Local Contact
Name: | Local contact is the same information as given above. | | B. Relevant standard(s) of | or other requirement(s) that is/are the basis for this report: | | 63.10(e)(3) – Excess Em | issions and Continuous Monitoring System Performance Report | | | waiver of recordkeeping and/or reporting requirements under the ard(s) in conjunction with this report? | | ☐ Yes | ⊠ No | | reporting requirements to
whatever information yo | must submit the application for a waiver of recordkeeping and/or ogether with this report. The application for waiver should include a consider useful to convince the Administrator that a waiver of ng is warranted. (63.10(f)(3)) | | | | - D. Check the box that corresponds to the reports you are submitting: - ☐ Summary Report Only (Complete Sections II and IV) - Excess Emission and CMS Performance Report and Summary Report (Complete Sections II, III, and IV). ## Section II - Certification fficial of nd true | | ed after a reasonable inquiry, I as a responsible of information contained in this report is accurate a | |-----------------------------------|---| | Stewart Fletcher, General Manager | | | Signature: Stt Ht | Date: 7-21-13 | | | Page 11 of 29 | HERITAGE THERMAL SERVICES SEMI-ANNUAL SSMP, EE, & CMS REPORT July 31, 2013 ## Section III - Excess Emissions and CMS Performance Report | A. Excess Emissions | |--| | Have any excess emissions or exceedances of a parameter occurred during this reporting period? Yes □ No | | 2. If you answered yes, complete the following table for each period of excess emissions and/or parameter monitoring exceedances, as defined in the relevant standard(s), that occurred during periods other than startups, shutdowns, and/or malfunctions of your affected source. (63.10(c)(7) (11)) | | See next page for completed table. | | | | | | | (S) (S) | | |-----------------------------------|---------------|---------------|----------|-----------------------------|---|--| | Name | Start Time | End Time | Duration | Cause (report) | Cause
Description | Corrective
Actions | | THC | 1/19/13 21:46 | 1/19/13 22:42 | 56.48 | Operator Error
Feed Prep | Improperly prepared waste caused poor combustion. | Restarted unit.
Reaffirmed
prep. | | ТНС | 1/23/13 15:58 | 1/23/13 17:04 | 66.08 | Operator Error
Feed Prep | Improperly prepared waste cause poor combustion. | Restarted unit,
Revised
processing. | | SCC
Pressure
Using
Seals | 2/1/13 18:14 | 2/1/13 18:14 | 0.36 | Operator Error
Feed Prep | Improperly
prepared
waste caused
pressure spike. | Restarted unit.
Removed
from waste
mix. | | THC | 2/5/13 21:10 | 2/5/13 22:10 | 59.53 | Operator Error
Feed Prep | Improperly
prepared
waste caused
poor
combustion. | Restarted unit.
Removed
from waste
mix. | | THC | 2/14/13 7:06 | 2/14/13 8:04 | 57,41 | Operator Error
Feed Prep | Improperly prepared waste caused poor combustion. | Restarted unit.
Revised
procedure. | | ТНС | 2/17/13 1:13 | 2/17/13 2:13 | 59.56 | Operator Error
Feed Prep | Improperly
prepared
waste caused
poor
combustion. | Restarted unit.
Removed
from waste
mix. | | THC | 2/19/13 9:15 | 2/19/13 9:42 | 27.01 | Operator Error
Feed Prep | Improperly prepared waste caused poor combustion. | Restarted unit.
Removed
from waste
mix. | | | | ** | | | Ĭ | | |------|---------------|---------------|----------|-------------------------------------|--|--| | Name | Start Time | End Time | Duration | Cause (report) | Cause
Description | Corrective
Actions | | ТНС | 2/20/13 9:29 | 2/20/13 10:29 | 60.05 | Operator Error
Feed Prep | Improperly
prepared
waste caused
poor
combustion. | Restarted unit.
Removed
from waste
mix. | | ТНС | 2/24/13 8:46 | 2/24/13 9:43 | 56.51 | Operator Error
Poor
Operation | Operator failed to adjust to adverse kiln conditions leading to poor combustion. | Restarted unit.
Reduced
feeds. | | ТНС | 3/4/13 8:17 | 3/4/13 9:15 | 57.53 | Operator Error
Feed Prep | Improperly prepared waste caused poor combustion. | Restarted unit.
Removed
from waste
mix. | | ТНС | 3/22/13 15:28 | 3/22/13 16:25 | 56.50 | Operator Error
Feed Mix | Overfeed of waste caused poor combustion and THC. | Reduced
waste feeds.
Restarted unit. | | ТНС | 4/3/13 19:27 | 4/3/13 19:45 | 18.02 | Operator Error
Feed Prep | Improperly prepared waste caused poor combustion. | Reduced
charges.
Restarted unit. | | THC | 4/4/13 15:12 | 4/4/13 15:14 | 2.03 | Operator Error
Feed Prep | Improperly
prepared
waste caused
poor
combustion. | Reduced charges. Restarted unit. | | THC | 4/11/13 6:00 | 4/11/13 6:58 | 57.50 | Operator Error
Feed Mix | Overfeed of waste caused poor combustion and THC. | Reduced
waste feeds.
Restarted unit. | | Г | | | | | 1 | | |-----------------------------------|---------------|---------------|----------|-------------------------------------|---|---| | Name | Start Time | End Time | Duration | Cause (report) | Cause
Description | Corrective
Actions | | ТНС | 4/13/13 18:47 | 4/13/13 19:48 | 60.25 | Operator Error
Feed Prep | Improperly
prepared
waste caused
poor
combustion. | Reduced
charges.
Restarted unit. | | _RJ DP | 4/13/13 19:20 | 4/13/13 20:30 | 69.13 | Operator Error
Poor
Operation | Operator failed to maintain OPL during WFCO. | Regained
OPL.
Restarted unit. | | THC | 4/25/13 19:13 | 4/25/13 19;56 | 42.55 | Operator Error
Poor
Operation | Operator failed to provide adequate combustion air causing THC. | Increased air
flow,
Restarted unit. | | тнс | 5/21/13 10:32 | 5/21/13 11:33 | 60.59 | Operator Error
Line Flush | Improper Ilushing of direct lance caused poor combustion. | Adjusted flow.
Restarted unit. | | ТНС | 5/22/13 9:01 | 5/22/13 10:02 | 60.27 | Operator Error
Feed Prep | Improper feed
prep caused
poor
combustion
and THC. | Spread-out
charges.
Restarted unit. | | ТНС | 5/26/13 14:27 | 5/26/13 14:51 | 23.47 | Operator Error
Feed Prep | Improper feed prep caused poor combustion and THC. | Reduced
charges.
Restarted unit. | | SCC
Pressure
Using
Seals | 6/2/13 5:10 | 6/2/13 5:11 | 0.29 | Operator Error
Feed Prep | Improper feed
prep caused
pressure spike. | Restarted unit. | | Name | Start Time | End Time | Duration | Cause (report) | Cause
Description | Corrective
Actions | |------|---------------|---------------|----------|-------------------------------------|--|---| | THC | 6/2/13 5:14 | 6/2/13 6:14 | 59.53 | Operator Error
Feed Prep | Improper feed prep caused poor combustion and THC. | Restarted unit, | | THC | 6/5/13 12:36 | 6/5/13 13:35 | 58.55 | Operator Error
Feed Prep | Improper feed
prep caused
poor
combustion
and THC. | Restarted unit | | THC | 6/15/13 9:46 | 6/15/13 10:45 | 58.53 | Operator Error
Feed Prep | Improper feed
prep caused
poor
combustion
and THC. | Restarted unit | | THC | 6/22/13 13:54 | 6/22/13 14:55 | 61.00 | Operator Error
Feed Prep | Improper feed
prep caused
poor
combustion
and THC. | Restarted unit.
Reduce
charges. | | THC | 6/26/13 6:22 | 6/26/13 7:23 | 61.01 | Operator Error
Poor
Operation | Poor lance
management
cause poor
combustion. | Unit restarted.
Operator
retrained. | #### B. CMS Performance 1. Has a CMS been inoperative (except for zero/low-level and high-level checks), out of control (as defined in 63.8(c)(7)(i)), repaired, or adjusted during this reporting period? ☐ Yes ☒ No 2. If you answered yes, complete the following table for each period a CMS was out of control, repaired, or
adjusted: (63.10(c)(5)-(6), (10)-(12); 63.8(c)(8). | CMS
Type | Mfg | Process
ID | Start Date | Completion
Date | Nature & Cause
of Malfunction
(if any) | Corrective
Actions Taken
or Preventative
Measures
Adopted | Nature of
Repairs or
Adjustments
Made to
Inoperable or
OOC CMS | |-------------|-----|---------------|------------|--------------------|--|---|---| | | | | | | | | | | 3. | Indicate the total | process operating | time during the | reporting period. | (63.10(c)(13)) | |-----|--------------------|-------------------|------------------|-------------------|----------------| | 000 | mulcate the total | process operating | unite during the | reporting periou. | , (U) | Total process operating time (days): Days in reporting period: 181 Facility total process operating time (days): 178.49 Total days on waste: 176.70 Total days on fuels: 1.79 ## <u>Section IV – Summary Report – Gaseous and Opacity Excess Emissions and CMS Performance</u> #### A. Report Date and Submittal Reporting Period Indicate the reporting period covered by this submittal and the date of this summary report. (63.10(e)(3)(vi)) | Reporting Period beginning date | Reporting Period ending date | Summary Report Date | |---------------------------------|------------------------------|---------------------| | January 1, 2013 | June 30, 2013 | July 31, 2013 | #### **B. Process Description and Monitoring Equipment Information** Complete the following process description and monitoring equipment information table for each affected source process unit: | Total operating time of affected source during the reporting period (days) | | |--|--| | 254,450 minutes of unit burning/ retaining hazardous waste; 2,575 minutes on virgin fuels. | | | | Process unit name | | |---------------------------------|-------------------|--| | Rotary Kiln Incineration System | | | | Process unit description | | |---|--| | Rotary kiln and ancillary equipment for combustion of hazardous wastes. | | | Emission and/or operating par | ameter limitations specified in the relevant standards | |-------------------------------|--| | See Table 1 and 2 below. | A distribution of the second o | #### TABLE 1 - APPLICABLE EMISSIONS STANDARDS | Emissions Parameter | Limit | Citation | |--|-------------------------------|--------------------------| | Destruction and Removal Efficiency (DRE) | ≥99.99% | 40 CFR 63.1203(c)(1) | | PCDDs/PCDFs | ≤0.20 ng/dscm TEQ basis | 40 CFR 63.1219(a)(1)(i) | | HCI/Cl ₂ | ≤ 32 ppmv dry as HCl | 40 CFR 63.1219(a)(6) | | Mercury | ≤ 130 µg/dscm | 40 CFR 63.1219(a)(2) | | Semi volatile Metals (SVM) | ≤ 230 µg/dscm | 40 CFR 63.1219(a)(3) | | Low Volatile Metals (LVM) | ≤ 92 µg/dscm | 40 CFR 63.1219(a)(4) | | Totals Hydrocarbons | ≤ 10 ppmv | 40 CFR 63.1219(a)(5)(ii) | | Particulate Matter (PM) | ≤ 0.013 gr/dscf or 34 mg/dscm | 40 CFR 63.1219(a)(7) | #### **TABLE 2 - OPERATING PARAMETERS** | Process Parameter (Tag ID) | Units | Avg.
Period | Basis | Limit | |---|----------|----------------|--|---------| | Minimum Feed Lance Atomization
Pressure ¹ | Psig | Instant. | Mfg. Rec. | 30 | | Maximum SCC Pressure (PT-4307 & PT-4308) | In, w.c. | | eptember 4, 2003
of 5 concerning this | | | Maximum Temperature at ESP Inlet (TI-6002A/B) | °F | 1-hr | СРТ | 424 | | Maximum Pumpable Waste Feed Rate
(WQI-9000T) | Lb/hr | 1-hr | СРТ | 29,926 | | Maximum Total Waste Feed Rate (WQI-9000F) | Lb/hr | 1-hr | СРТ | 35,069 | | Minimum Kiln Temperature (TI-
4300A/B) | °F | 1-hr | СРТ | 1.718 | | Minimum SCC Temperature (TI-
4310A/B) | ٥È | 1-hr | СРТ | 1,747 | | Maximum Process Gas Flow rate (FI-7510A/B) | Scfm | 1-hr | CPT | 67.505 | | Minimum Loc. 1 Carbon Feed Rate (WI-7003) | Lb/hr | 1-hr | СРТ | | | Minimum Loc, 2 Carbon Feed Rate (WI-7002) | Lb/hr | 1-hr | СРТ | 8-100-1 | ¹ Each liquid lance has a pressure switch. When the pressure drops below 30 psig on any lance the feed from that lance will be automatically cutoff. Tag lds: PSL-3113 (High BTU), PSL-3123 (Organic), PSL-3143 (Aqueous), PSL-3133 (Sludge), PSL-3153 (Slurry), and PSL-3100A/B (Sludge 2). Page 19 of 29 | Process Parameter (Tag ID) | Units | Avg.
Period | Basis | Limit | |---|---|-----------------------------|--|--| | Minimum Loc. 1 Carbon Feed Pressure
(PI-5732) | Psig | 1-hr | СРТ | 3.0 | | Minimum Loc. 2 Carbon Feed Pressure (PI-7132) | Psig | 1-hr | CPT | 3.0 | | Maximum Ash Feed Rate (WQI-
9000AH) | Lb/hr | 12-hr | CPT | 10,333 | | Minimum Ring Jet Pressure Drop (DPI-7401) | in. w.c. | I-hr | CPT | 28.0 | | Minimum Scrubber (1 st and 2 nd Packed
Bed, combined) Liquid Flow Rate (FQI-
7201) | gpm | I-hr | CPT | 1,287 | | Minimum Scrubber (Ring Jet) Liquid
Flow Rate (FI-7404A/B) | gpm | I-hr | CPT | 446 | | Minimum Scrubber (Ring Jet)
Blowdown (FI-7403) | gpm | I-hr | СРТ | 19.5 | | Minimum Scrubber (Ring Jet) Tank
Level (LIC-7401) | feet | I-hr | СРТ | 1.7 | | ESP Parameters | The ESP is operating with all fields available with set points of 45,000 volts and 90 sparks per minute, each field and minimum current of 100 milliamps, each field (see USEPA letters dated Dec. 10 and Dec. 27, 2003). | | | | | Minimum Scrubber (1st and 2nd Packed | - | | | 5). | | Bed, combined) Feed Pressure | in. w.c. | l-hr | Mfg. Rec. | Not Req'd. | | Bed, combined) Feed Pressure Minimum Scrubber (1st and 2nd Packed | in. w.c. | l-hr
l-hr | 1 | T | | | | | Mfg. Rec. | Not Req'd. | | Bed, combined) Feed Pressure Minimum Scrubber (1 st and 2 nd Packed Bed) Pressure Drop Minimum Scrubber (3 rd Stage) Liquid pH | in. w.c. | l-hr | Mfg. Rec. | Not Req'd. | | Bed, combined) Feed Pressure Minimum Scrubber (1 st and 2 nd Packed Bed) Pressure Drop Minimum Scrubber (3 rd Stage) Liquid pH (AI-7307A/B) Maximum Total Chlorine Feed Rate | in. w.c. | l-hr
l-hr | Mfg. Rec. Mfg. Rec. Prior Testing | Not Req'd. 1.3 7.6 | | Bed, combined) Feed Pressure Minimum Scrubber (1 st and 2 nd Packed Bed) Pressure Drop Minimum Scrubber (3 nd Stage) Liquid pH (AI-7307A/B) Maximum Total Chlorine Feed Rate (WQI-9000CL) Maximum Total Semi volatile Metals Feed Rate (WQI-9000SV) Maximum Total Low Volatile Metals | in. w.c. pH units Lb/hr | 1-hr
1-hr
12-hr | Mfg. Rec. Mfg. Rec. Prior Testing Prior Testing | Not Req'd. 1.3 7.6 2.032 | | Bed, combined) Feed Pressure Minimum Scrubber (1 st and 2 nd Packed Bed) Pressure Drop Minimum Scrubber (3 rd Stage) Liquid pH (AI-7307A/B) Maximum Total Chlorine Feed Rate (WQI-9000CL) Maximum Total Semi volatile Metals Feed Rate (WQI-9000SV) Maximum Total Low Volatile Metals Feed Rate (WQI-9000LV) Maximum Total Pumpable Low Volatile | in. w.c. pH units Lb/hr Lb/hr | 1-hr
1-hr
12-hr | Mfg. Rec. Mfg. Rec. Prior Testing Prior Testing Prior Testing | Not Req'd.
1.3 7.6 2.032 83.2 | | Bed, combined) Feed Pressure Minimum Scrubber (1 st and 2 nd Packed Bed) Pressure Drop Minimum Scrubber (3 rd Stage) Liquid pH (AI-7307A/B) Maximum Total Chlorine Feed Rate (WQI-9000CL) Maximum Total Semi volatile Metals | in. w.c. pH units Lb/hr Lb/hr Lb/hr | 1-hr 1-hr 12-hr 12-hr 12-hr | Mfg. Rec. Mfg. Rec. Prior Testing Prior Testing Prior Testing Prior Testing | Not Req'd. 1.3 7.6 2.032 83.2 400 | ## **Monitoring Equipment Information** | Monitored Parameter | Instrument
Description | Range and Units | Tag Number | Last
Calibration/Audit
Date | Accuracy of Measurement | |--|---|------------------|------------|-----------------------------------|-------------------------| | Power -ESP Field #1 | Environmental
Elements Controller | 0 - 500 ma | EI-6700 | 5/28/2013 | N/A | | Power -ESP Field #2 | Environmental
Elements Controller | 0 – 500 ma | EI-6710 | 5/28/2013 | N/A | | Power -ESP Field #3 | Environmental
Elements Controller | 0 – 750 ma | E1-6720 | 5/28/2013 | N/A | | Scrubber Second Packed
Bed Liquid PH | Electro-Chemical
Devices | 0 – 14 pH units | AT-7307A | Performed
Weekly | ± 5% of range | | Scrubber Second Packed
Bed Liquid PH | Electro-Chemical
Devices | 0 – 14 pH units | AT-7307B | Performed
Weekly | ± 5% of range | | Scrubber 2nd Packed Bed
Differential Pressure | Rosemount
Transmitter/Pressure
transducer | 0 – 8 in w.c. | DPT-7307 | 9/29/2012 | ± 2% of range | | Pumpable Feed Rate
High BTU Lance | Micromotion Mass
Flow Meter | 0 – 10,000 lb/hr | FT-3110 | 6/14/2013 | ± 10% of range | | Pumpable Feed Rate
Organic Lance | Micromotion Mass
Flow Meter | 0 – 10,000 lb/hr | FT-3120 | 6/13/2013 | ± 10% of range | | Pumpable Feed Rate
Sludge Lance | Positive
displacement pump
(calculation) | 0 – 15,000 lb/hr | FT-3130 | Not Applicable
(calculation) | N/A | | Pumpable Feed Rate
Aqueous Lance | Micromotion Mass
Flow Meter | 0 – 10,000 lb/hr | FT-3140 | 6/13/2013 | ± 10% of range | | Pumpable Feed Rate
Slurry Lance | Positive
displacement pump
(calculation) | 0 – 15,000 lb/hr | FT-3150 | Not Applicable
(calculation) | N/A | | Scrubber First Packed bed flow rate | PolySonics Doppler
Flow | 0 – 1.500 gpm | FT-7204A | 6/13/2013 | ± 10% of range | | | | 27 27 27 | | | | |---|--|-----------------|------------|-----------------------------------|----------------------------| | Monitored Parameter | Instrument
Description | Range and Units | Tag Number | Last
Calibration/Audit
Date | Accuracy of
Measurement | | Scrubber First Packed bed flow rate | Panametrics
Ultrasonic Flow | 0 – 1,500 gpm | FT-7204B | 6/13/2013 | ± 10% of range | | Scrubber Second Packed bed flow rate | PolySonics Doppler
Flow | 0 – 1,500 gpm | FT-7304A | 6/13/2013 | ± 10% of range | | Scrubber Second Packed bed flow rate | Panametrics
Ultrasonic Flow | 0 – 1.500 gpm | FT-7304B | 6/13/2013 | ± 10% of range | | Ring Jet Blow Down | Panametries
Ultrasonie Flow | 0 – 500 gpm | FT-7403A | 6/13/2013 | ± 10% of range | | Ring Jet Blow Down | Panametrics
Ultrasonic Flow | 0 – 500 gpm | FT-7403B | 6/13/2013 | ± 10% of range | | Scrubber Ring Jet Liquid
Flow Rate | Panametries
Ultrasonic Flow | 0 – 1.500 gpm | FT-7404A | 6/13/2013 | ± 10% of range | | Scrubber Ring Jet Liquid
Flow Rate | Panametrics
Ultrasonic Flow | 0 – 1,500 gpm | FT-7404B | 6/13/2013 | ± 10% of range | | Ring Jet Vessel Level | Rosemount
Transmitter/ Pressure | 0 – 5 feet | LT-7401A | 9/29/2012 | ± 2% of range | | Ring Jet Vessel Level | Rosemount
Transmitter/ Pressure | 0 – 5 feet | LT-7401B | 9/29/2012 | ± 2% of range | | Kiln Inlet Shroud
(differential) Pressure
(reference to SCC) | Rosemount Pressure
transducer | 0 - 10 in. w.c. | PDT-4305 | 7/9/2012 | ± 2% of range | | Kiln Outlet Shroud
(differential) Pressure
(reference to SCC) | Rosemount Pressure
transducer | 0 - 10 in. w.c. | PDT-4306 | 7/9/2012 | ± 2% of range | | Kiln Inlet Shroud Pressure
(reference to ambient) | Rosemount Pressure
transducer | 0 - 10 in. w.c. | PT-4307 | 7/9/2012 | ± 2% of range | | Scrubber 1st Packed Bed
Differential Pressure | Rosemount
Transmitter /Pressure
transducer | 0 – 8 in w.c. | PDT-7207 | 10/15/2012 | ± 2% of range | | Monitored Parameter | Instrument
Description | Range and Units | Tag Number | Last
Calibration/Audit
Date | Accuracy of Measurement | |--|---|----------------------------------|------------------------|-----------------------------------|-------------------------| | Ring Jet Differential
Pressure | Rosemount
Transmitter/ Pressure | 0 – 40 in w.c.
(changed 2005) | PDT-7401A
PDT-7405A | 10/15/2012 | ± 2% of range | | Ring Jet Differential
Pressure | Rosemount
Transmitter/ Pressure | 0 – 40 in w.c.
(changed 2005) | PDT-7401B
PDT-7405B | 10/15/2012 | ± 2% of range | | Sludge 2 Lance Atomizing
Pressure | Generic pressure
switch | 0 – 50 psi | PSL-3100A | 7/9/2012 | ± 5% of range | | Sludge 2 Lance Atomizing
Pressure | Generic pressure switch | 0 – 50 psi | PSL-3100B | 7/9/2012 | ± 5% of range | | High Btu Lance Atomizing
Pressure | Generic pressure
switch | 0 – 50 psi | PSL-3113 | 7/9/2012 | ± 5% of range | | Organic Lance Atomizing
Pressure | Generic pressure switch | 0 – 50 psi | PSL-3123 | 7/9/2012 | ± 5% of range | | Studge Lance Atomizing
Pressure | Generic pressure
switch | 0 – 50 psi | PSL-3133 | 7/9/2012 | ± 5% of range | | Aqueous Lance Atomizing
Pressure | Generic pressure
switch | 0 – 50 psi | PSL-3143 | 7/9/2012 | ± 5% of range | | Slurry Lance Atomizing
Pressure | Generic pressure
switch | 0 – 50 psi | PSL-3153 | 7/9/2012 | ± 5% of range | | Kiln / Secondary
Combustion Chamber
Pressure | Rosemount
Transmitter /
Pressure transducer | -3.5 - +2.5 in.
w.e. | PT-4300A | WFCO Test done
every 3 weeks | ± 2% of range | | Kiln / Secondary
Combustion Chamber
Pressure | Rosemount
Transmitter /
Pressure transducer | -3.5 - +2.5 in.
w.c. | PT-4300B | WFCO Test done
every 3 weeks | ± 2% of range | | Spray Dryer Carbon
Carrier Fluid Pressure | Rosemount
Transmitter /
Pressure | 0 – 15 psi | PT-5732 | 7/9/2012 | ± 2% of range | | Scrubber Carbon Carrier
Fluid Pressure | Rosemount
Transmitter /
Pressure | 0 – 15 psi | PT-7132 | 7/9/2012 | ± 2% of range | | | | 1 | 1 | | | |---|--|--------------------------------|----------------------|-----------------------------------|----------------------------| | Monitored Parameter | Instrument
Description | Runge and Units of Measurement | Tag Number | Last
Calibration/Audit
Date | Accuracy of
Measurement | | ESP Inlet Temperature | Rosemount
Transmitter /
Thermocouple | 0 - 600 °F | TT-6002A | WFCO Test done
every 3 weeks | ± 2% of range | | ESP Inlet Temperature | Rosemount
Transmitter /
Thermocouple | 0 - 600 °F | TT-6002B | WFCO Test done
every 3 weeks | ± 2% of range | | Kiln Temperature | Land CD1
Thermometer | 752 – 3272 °F | TT-4300A | 3/14/2013 | ± 1% of range | | Kiln Temperature | Land CD1
Thermometer | 752 - 3272 °F | TT-4300B | 12/17/2012 | ± 1% of range | | Secondary Combustion
Chamber Temperature | Land CD1
Thermometer | 752 – 3272 °F | TT-4310A | 8/30/2012 | ± 1% of range | | Secondary Combustion
Chamber Temperature | Land CD1
Thermometer | 752 – 3272 °F | TT-4310B | 2/20/2013 | ± 1% of range | | Pumpable Feed Rate
Direct Drum Scale A | Generic Load Cell
(Loss in weight
calculation) | 0 – 5.000 tb | WT-3050 | 6/8/2013 | ± 3% of range | | Pumpable Feeds
Direct Drum Scale B | Generic Load Cell
(Loss in weight
calculation) | 0 - 5,000 lb | WT-3055 | 6/8/2013 | ± 3% of range | | Pumpable FeedsTanker
Scale A (South Bay) | Generic Load Cell.
Loss in weight
calculation | 0 – 80,000 lb | WT-3060 | 6/8/2013 | ± 3% of range | | Pumpable Feeds
Tanker Scale B (East Bay) | Generic Load Cell.
Loss in weight
calculation | 0 – 100,000 lb | WT-3065 | 6/8/2013 | ± 3% of range | | Conveyor Scale Drum
Processing | Generic Load Cell
(Scale) | 0 – 2,000 lb | WT-3070
ARTS Data | 6/8/2013 | ± 3% of range | | Splitting Scale Drum
Processing | Generic Load Cell
(Scale) | 0 – 5,000 lb | WT-3075
ARTS Data | 6/8/2013 | ± 3% of range | | Floor Scale Drum
Processing Lab Pack | Generic Load Cell
(Scale) | 0 – 2,000 lb | WT-3080
ARTS Data | 6/8/2013 | ± 3% of range | | Monitored Parameter | Instrument
Description | Range and Units | Tag Number | Last
Calibration/Audit
Date | Accuracy of
Measurement | |---|---|--|------------|-----------------------------------|--| | Kiln Bulk Feed Crane | Generic Load Cell
(Scale) | 0 - 10,000 lb | WT-3105 | 6/8/2013 | ± 3% of range | | Scrubber Carbon Feed Rate | Generic Load Cell /
Loss in Weight
Feeder | 0 – 50 lb/hr | WT-7002 | 6/8/2013 | ± 1% of range | | Spray Dryer Carbon Feed
Rate | Generic Load Cell /
Loss in Weight
Feeder | 0 – 50 lb/hr | WT-7003 | 6/8/2013 | ± 1% of range | | Total Hydrocarbon
Analyzer (Stack) | California Analytical
Instruments, Inc. | 0 – 100 ppm
0 – 500 ppm
as Propane | AI-7850A | 5/15/2013 | £ ± 5% of span | | Total Hydrocarbon
Analyzer (Stack) | California Analytical
Instruments, Inc. | 0 – 100 ppm
0 – 500 ppm
as Propane | AI-7850B |
5/15/2013 | £ ± 5% of span | | Stack Oxygen Analyzers
(dry) | Ametek | 0 – 25 % | AI-7860A | 5/15/2013 | ± 1.0% Oxygen | | Stack Oxygen Analyzers
(dry) | Ametek | 0 – 25 % | AI-7860B | 5/15/2013 | ± 1.0% Oxygen | | Stack Oxygen Analyzers
(wet) | Ametek | 0 – 25 % | AI-7865A | 5/15/2013 | ± 1.0% Oxygen | | Stack Oxygen Analyzers
(wet) | Ametek | 0 – 25 % | AI-7865B | 5/15/2013 | ± 1.0% Oxygen | | Flue Gas Flow Rate
(Scrubber Outlet) | Calculation
Stack - Reheat Flow | 0 – 80,000 scfm | FT-7510A | 5/15/2013 | < 15% relative
accuracy or < 7,5% of
the applicable standard | | Flue Gas Flow Rate
(Scrubber Outlet) | United Sciences
UltraSonic Gas Flow | 0 – 80,000 scfm | FT-7510B | 5/15/2013 | < 15% relative
accuracy or < 7.5% of
the applicable standard | | Flue Gas Flow Rate (Stack) | United Sciences
UltraSonic Gas Flow | 0 - 100,000 scfm | FT-7805A | 5/15/2013 | < 15% relative
accuracy or < 7.5% of
the applicable standard | | Monitored Parameter | Instrument
Description | Range and Units of Measurement | Tag Number | Last
Calibration/Audit
Date | Accuracy of
Measurement | |----------------------------|---|--------------------------------|------------|-----------------------------------|--| | Flue Gas Flow Rate (Stack) | Calculation
Process + Reheat
Flow | 0 – 100,000 sefm | FT-7805B | 5/15/2013 | < 15% relative
accuracy or < 7.5% of
the applicable standard | #### C. Emission Data Summary Complete the following emission data summary table for each affected source: (63.10(e)(3)(vi)(1)) Total duration of excess emission / parameter exceedances (minutes for opacity, hours for gases) | Excess Emissions | Total
Duration(min) | Total Operating time of affected
source during the reporting
period (min) | % Of total source operating time during which excess emissions occurred | |---|------------------------|---|---| | Maximum Ash Feed Rate (WQI-
9000AH) | 0 | 257,025 | 0.00% | | Maximum Process Gas Flowrate (FI-7510A/B) | 0 | 257,025 | 0.00% | | Maximum Pumpable Waste Feed Rate (WQI-9000T) | 0 | 257,025 | 0.00% | | Maximum SCC Pressure (PI-4300A/B) | 6.51 | 257,025 | 0.00% | | Maximum Temperature at ESP Inlet (TI-6002A/B) | 0 | 257,025 | 0.00% | | Maximum Total Chlorine Feed Rate
(WQ1-9000CL) | 0 | 257,025 | 0.00% | | Maximum Total Low Volatile Metals
Feed Rate (WQI-9000LV) | 0 | 257,025 | 0.00% | | Maximum Total Mercury Feed Rate
(WQI-9000M) | 0 | 257,025 | 0.00% | | Maximum Total Pumpable Low Volatile
Metals Feed Rate (WQI-9000PLV) | 0 | 257,025 | 0.00% | | Maximum Total Semi volatile Metals
Feed Rate (WQI-9000SV) | 0 | 257,025 | 0.00% | | Maximum Total Waste Feed Rate (WQI-9000F) | 0 | 257,025 | 0.00% | | Minimum Feed Lance Atomization
Pressure | 0 | 257,025 | 0.00% | | Minimum Kiln Temperature (TI-
4300A/B) | 450.73 | 257,025 | 0.18% | | Excess Emissions | Total
Duration(min) | Total Operating time of affected
source during the reporting
period (min) | % Of total source operating time during which excess emissions occurred | |--|------------------------|---|---| | Minimum Loc. 1 Carbon Feed Pressure
(PI-5732) | 94.06 | 257,025 | 0.04% | | Minimum Loc. 2 Carbon Feed Pressure (PI-7132) | 0 | 257.025 | 0.00% | | Minimum Loc. 1 Carbon Feed Rate (WI-7003) | 276.6 | 257,025 | 0,11% | | Minimum Loc. 2 Carbon Feed Rate (WI-7002) | 92.67 | 257.025 | 0.04% | | Minimum Ring Jet Pressure Drop (DPI-7401) | 340.36 | 257,025 | 0.13% | | Minimum SCC Temperature (TI-
4310A/B) | 522.67 | 257,025 | 0.20% | | Minimum Scrubber (1st and 2std Packed
Bed) Pressure Drop | 0 | 257,025 | 0.00% | | Minimum Scrubber (1 st and 2 nd Packed
Bed, combined) Liquid Flow Rate (FQI-
7201) | 21.12 | 257,025 | 0.01% | | Minimum Scrubber (3 rd Stage) Liquid
pH (AI-7307A/B) | 51.77 | 257,025 | 0.02% | | Minimum Scrubber (Ring Jet)
Blowdown (Fl-7403) | 0 | 257,025 | 0.00% | | Minimum Scrubber (Ring Jet) Liquid
Flow Rate (FI-7404A/B) | 48.26 | 257,025 | 0.02% | | Minimum Scrubber (Ring Jet) Tank
Level (LIC-7401) | 0 | 257.025 | 0.00% | | THC | 2599.37 | 257,025 | 1.01% | | ESP Controls | 0 | 257,025 | 0.00% | | Total Duration | 4509.07 | 257,025 | 1.75% | Summary of causes of excess emissions / parameter exceedances (% of total duration by cause): | TYPE | Sum Of Duration | % of Total Duration | |----------------------------|-----------------|---------------------| | Startup/shutdown | 686.47 | 15.22% | | Control Equipment Problems | 756.24 | 16.77% | | Process Problems | 1170.49 | 25.96% | | Other unknown causes | 402.94 | 8.94% | | Other known causes | 1492.93 | 33.11% | | | 4509.07 | 100.00% | #### D. CMS Performance Summary Complete the following CMS performance summary table for each affected source: (63.10(e)(3)(vi)(J)) | | Total duration of CMS downtime ¹ | |-----------|---| | 0 minutes | | | • | tal anausting time of affected source during the reporting paried | | | Total operating time of affected source during the reporting period | | |-------------|---|--| | 257,025 min | | | | Percent of total source operating time during which CMS were down | | | | | |---|--|--|--|--| | 0.00 % | | | | | ¹ Heritage Thermal Services maintains redundant CMS equipment in most cases to prevent CMS downtime. There were no periods during this time that this redundancy did not prevent CMS downtime. | Summary of causes of CMS downtime (percent of downtime by cause) | | | |--|---|--| | Monitoring equipment malfunctions | 0 | | | Non-monitoring equipment malfunctions | 0 | | | Quality assurance / quality control calibrations | 0 | | | Other known causes | 0 | | | Other unknown causes | 0 | | HERITAGE THERMAL SERVICES SEMI-ANNUAL SSMP, EE, & CMS REPORT July 31, 2013 ## E. CMS, Process, or Control Changes | 1. | Have you m | ade any cha | inges in CMS, | processes, | or controls | since the la | ast reporting | |----|------------|-------------|----------------|------------|-------------|--------------|---------------| | | period? | | | 20 | | | | | | ☐ Yes | ⊠No | (if no, end of | form) (63. | 10(2)(3)(vi | (K) | | 2. If you answered yes, please describe the changes below: #### **END OF REPORT**